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DESIGN ACTIVITY IN THE
SOFTWARE COST REDUCTION PROJECT

INTRODUCTION I

This report presents the results of an investigation of design activities of the software engineers
working on the Software Cost Reduction (SCR) project. One purpose of this study is to offer insights
into understanding the design process of complex software. A second purpose is to identify parameters
that characterize and predict design progress. The data analyses suggest that at least one parameter
does characterize and predict design progress under the SCR approach.

The Software Cost Reduction Project

Since 1978, the Naval Research Laboratory in cooperation with the Naval Weapons Center has
been redeveloping version 2 of the operational flight program for the A-7E aircraft [1]. Software
engineering techniques such as formal requirements specification, information hiding [21, abstract inter-
faces [31, and cooperating sequential processes [41 are being used. This effort is referred to as .the SCR
project.

The goals of the SCR project are to (a) demonstrate the feasibility of using selected software
engineering techniques in developing complex, real-time software; and (b) provide a model for
software design. The claimed advantage of the selected software engineering techniques is that they
can facilitate the development of easy-to-change software. Heninger et al. [51 provide complete discus-
sion of the project's software requirements. Britton and Parnas [61 give a detailed description of the
module design structure.

The Software Technology Evaluation Project

The goal of the Software Technology Evaluation (STE) project is to evaluate alternative software
development technologies.* The approach is to monitor, evaluate, and compare software development
technologies used in different software projects. The monitoring and evaluating processes consist of
goal-directed data collection and analyses techniques [7]. One of the tasks of the STE project is to pro-
vide the basis for an objective evaluation of the methodology used in the SCR project. The two
projects are, however, separate research investigations each with its own goals, staff, and funding.

DATA COLLECTION

Since 1978, all SCR project engineers have been required to submit weekly reports on their
project activity hours. The activity data are collected on a form called the Weekly Activity Report, the
current version of which is presented in Chart 1. The boxes on the form represent different project
activities.

A submitted report is usually rather sparse; typically, it has only a few boxes marked with hours
spent on project activities during the week. A copy of a completed report form is presented in Chart 2.
Once a weekly activity report is given to STE project personnel, it is validated and entered into a com-
puter data base. An instruction sheet explaining how to report weekly activity is provided to each SCR
engineer.

Manuscript approved March 5, 1986.
'This work is currently funded by the DoD STARS Program as Measurement Area Task G-06.
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Module Development Activities

The front page of the Weekly Activity Report form is primarily used to record hours spent on
module development activity, where module means information hiding module [2]. As can be seen in
Chart 1, SCR development activity hours are captured for each engineer by a specific module within
the hierarchy (e.g.,/ Device Interface) and by design, code, and test categories. Space is provided for
project personnel to supply the names of the modules below the first two levels.

The primary product of design activity is the development of a module interface specification. A
typical interface specification for the Device Interface module [81 is presented in Chart 3. Design
activity is reported as hours devoted to design creating, design discussing, design peer reviewing, and
design formal reviewing activities. Design creating activity is time devoted to thinking about a design
including redesigning or documenting. Design discussing activity is time devoted to discussing design
issues via a computer message or directly with a colleague to assist with the design. Design peer review-
ing activity is time devoted to reading or commenting on (informally) design documentation produced
by another project member in order to assist with the design. Design formal reviewing activity is time
spent in a formal design review, typically at the Naval Weapons Center, which maintains the current
operational flight program.

Coding activity is reported as hours devoted to pseudocode, Extended Computer code,* C code
and TC codet activities. Pseudocode activity is further reported as hours devoted to code creating,
code discussing, and code peer reviewing activities. EC code, C code, and TC code activities are
reported as hours devoted to code creating, code discussing, code peer reviewing, and code programmer
testing activities. Code creating, code discussing, and code peer reviewing activities have definitions similar
to their counterparts. Code programmer testing activity is time devoted by programmers to computer-
based evaluation of their own code to convince themselves of its correctness.

Test activity is reported as hours devoted to test preparation, test conducting, and test reviewing
results activities. Test preparation activity is time devoted to creating, discussing, and reviewing plans
and procedures for computer-based testing of a module prior to formal subset testing. Test conducting
activity is time devoted to set up and execution of module test procedures on a computer. Test review-
ing results activity is time devoted to analyzing, discussing, and documenting results of a module test.

Other Activities

The back page of the weekly Activity Report form is used to record hours spent on software test-
ing and miscellaneous activities. Software testing activity is reported as hours spent on general issues of
computer-based testing and on testing of system subsets. Miscellaneous activity is reported as hours
spent on activities not included in any of the above definitions.

OVERVIEW OF SCR PROJECT ACTIVITIES

From January 1978 to February 1985, over 55,000 activity hours have been reported. Experi-
ments have been performed to provide reasonable assurance that the reported hours accurately reflect
project activity and are appropriately categorized [9]. Figure 1 represents the monthly accumulation of
hours expended on all activities. Figure 2 shows the monthly accumulation of hours expended in the
top level categories. Software Structures (SS) effort is time spent defining and documenting hierarchi-
cal module structure in the A-7E module guide [6]. Software Modules (SM) effort is time devoted pri-
marily to specifying and implementing modules. Software Testing (ST) effort is time spent on valida-
tion testing of subsets, and Miscellaneous (MISC) is time spent on all other activities such as travel and
project control. Most SCR work so far has concentrated on SM development.

*The Extended Computer is one of the modules of the program. EC code is consists of invocations of programs on this
module's interface.
tTC code is the assembly language code for the IBM System 4 PI model TC-2 computer. The operational flight program runs on
this machine.
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e-n.

DI.WOG: WEIGHT ON GEAR SENSOR

1. Introductlon

The weight on gear device is a sensor that detects whether or not the aircraft is resting on its
landing gear. This data can be used to infer whether or not the aircraft is airborne.

2. INTERFACE OVERVIEW

2.1. ACCESS PROGRAM TABLE

Program Parameters Deacription Undesired events

+GWEIGHT-ON-GEAR+ pl: boolean; 0 !+WOG+!
None

3. LOCAL TYPE DEFINITIONS None.

4. DICTIONARY

!+WOG+! TRUE iff weight on landing gear detected.

5. UNDESIRED EVENT DICTIONARY None.

6. SYSTEM GENERATION PARAMETERS None.

Chart 3 - Sample design specification
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Figure 3 shows the monthly accumulation of hours expended in the Software Modules category
on design, code (including pseudocode), and test activities. Over 75% of all reported software module
activity is module design including redesign. This is consistent with the emphasis in the SCR
methodology on extensive design with the expectation of significant reductions in coding, testing, and
maintenance efforts [101.

There are three categories of first-level SCR modules: Hardware Hiding modules, Behavior Hiding
modules, and Software Decision modules [6]. These, in turn, include ten categories of second-level
modules, listed in Table 1. Each of the second-level modules is organized into several submodules
(third-level modules), and some of these are further modularized. The EC module, with seven levels
of submodules, has the deepest module structure.

Six of the second-level modules have accumulated more than 1000 hours of activity; these are
EC, DI, FD, SS, AT, and PM. The six also have complete module interface specifications that are
baseline or nearly baselined. In Figures 4 through 9, the monthly accumulation of hours expended on
total activity and on design, code, and test activities is presented for each module.* Only the EC and
DI modules have appreciable amounts of coding and testing activities.

*Vertical lines in Figures 4 through 21 represent the dates on which baseline interfaces specifications for the respective modules
were released. The absence of these lines on a specific plot indicates that no baseline documents have been released for that
module.
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Table 1 - Abbreviations and Names of
Second-Level Software Modules

Abbreviation Name
AT Applications Data Type
DB Data Banker
DI Device Interface
EC Extended Computer
FD Function Driver
FLT Filter
PM Physical Model
SG System Generation
SS Shared Services
SU System Utilities
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ANALYSES OF MODULE DESIGN DATA

As mentioned above, the SCR project emphasizes careful design which is reflected by the fact that
design activity accounts for over 75% of all reported software module activity. One of the purposes of
the data analyses was to identify parameters that characterize the design processes and offer predictive
capabilities concerning them. Plots were constructed in order to characterize monthly hours expended
on the subactivities of module design: design creating (DC), design discussing (DD), design peer
reviewing (DR), design formal reviewing (DF), as well as total design (D). Unfortunately, characteris-
tic patterns were not readily apparent.

Subsequently, it was decided to examine the accumulation of hours expended on total design
subactivities. This approach is considered appropriate because each data point reflects the history of
design activities up to that point in time. Thus, the cumulative total design hours for a module is
defined by:

n
CumDn = D,

i=t

where Di is the monthly total of all design activities on a module for month i. (Note that Di includes
design activity on all subniodules of the module.) Because data are available for all the months
between January 1978 and February 1985, n has values from 1 to 86. Cumulative design creating hours
for a module is defined by:

n
CumDCn = I DCi,

i= t

where DCi is the monthly design creating subactivity for a module (including all submodules) for
month i. Again, n has values from 1 to 86. Similar definitions apply for CumDDn and CumDRn. Fig-
ures 10 through 15 show the significant cumulative design activities for each module.

An earlier study [91 highlighted the fact that ratios between activity categories provide valid and
potentially useful metrics of SCR project activity. STE Project personnel intuitively suspected that
ratios between activity categories could provide descriptive features of the SCR methodology that might
be generally applicable to software design. Consequently, six ratio series between
CumDCn, CumDDn, and CumDRn were computed. For example, the ratio between cumulative design
discussing and cumulative design creating is defined as:

10
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(CumDD/CumDC)n = CumDC '

where n has values from 1 to 86. The other five ratios, similarly defined, are
(CumDC/CumDD)n, (CumDC/CumDR)n, (CumDD/CumDR)n, (CumDR/CumDC)n, and (CumDR/
CumDD)n. These ratios were correlated with CumDn over the 86 reporting months. Pearson correla-
tion coefficients [11] are presented in Table 2. Next, for each module the ratio between monthly DC,
DD, and DR were computed (e.g. DCn/DDn, DCn/DRn, and so on) and correlated with the total
monthly Ds and with the monthly CumDs. These coefficients are presented in Tables 3 and 4.
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Table 2 - Pearson Correlation Coefficients Between CumD and Cum. Ratios

CumDC CumDC CumDD CumDD CumDR CumDR
eCumDD CumDR CumDC CumDR CumDC CumDD

AT -0.4034 0.1245a 0.9774 0.9609 0.7483 -0.2006a
DI 0.0560a -0.1998a 0.6574 0.1002a 0.8324 0.8124
EC -0.3785 -0.3091 0.9492 0.6530 0.5436 0.5436
FD 0.7565 -0.0897a 0.9482 -0.0252a 0.1001a 0.9575
PM -0.4090 -0.4144 0.9052 0.1429a 0.9235 0.3801
SS 0.9181 0.8665 0.5156 0.8408 -0.3675 -0.0568

aNot significant at the p>.005 level.
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Table 3 - Pearson Correlation Coefficients Between D and Monthly Ratios

Module DC/DD DC/DR DD/DC DD/DR DR/DC DR/DD
AT 0.3099 0.4031 0.3548 0.3048 0.3664 0.1572a
DI 0.3759 0.4829 0.1040a 0.2044a 0.0227a 0.2075a
EC -0.0008a 0.3972 0.3401 0.5396 0.0040a -0.0998a
FD 0.6470 0.5190 0.1305a 0.4813 0.1042a 0.3796
PM 0.3083 0.5845 0.3175 0.6581 0.0461a 0.3491
Ss 0.6509 0.6040 0.0461 a 0.4309 0.1248a 0.2578

aNot significant at the p>.005 level.

Table 4 - Pearson Correlation Coefficients Between CumD and Monthly Ratios

Module DC/DD DC/DR DD/DC DD/DR DR/DC DR/DD

AT 0.0532a 0.1667a 0.1169a 0.0843a -0.0177a -0.1287a
DI -0.1693a -0.1414a 0.0344a -0.0879a 0.0683a 0.0352a
EC -0.0932a 0.3933 0.3467 0.5236 -0.0248a -0.0886a
FD -0.0034a 0.0603a 0.1409a 0.0293a 0.1032a 0.1282a
PM 0.4034 0.3568 0.1182a 0.2205 0.170a 0.2582
Ss 0.0547a -0.0447a 0.1556a -0.0531 a -0.0177a 0.0815a

aNot significant at the p.>.005 level.

RESULTS

An examination of the correlation coefficients reveals that the ratio (CumDD/CumDC)n corre-
lates consistently well with CumD ,, as shown in Table 2.* This relationship is evident from the plots
of the ratios. In Fig. 16, the monthly ratio for (CumDD/CumDC)n is plotted for the EC module.
Comparing this with Fig. 10, one can see that design activity surges are characterized by prior or con-
.comitant dramatic increases in this ratio. When this ratio remains constant, it is an indication that
design activity has stabilized. Increases in this ratio seem to indicate progress. Consequently, we refer
to this as the progress indicator ratio (PIR).

Although the EC module is extremely large and complex, the relationship seems strong. A large
jump in design activity follows the large rise of the PIR. However, design activity for this module is
not quite stabilized, and the late downward trend in the ratio indicates increasing creating time relative
to discussing time.

The same patterns are also present for the DI module. As can be seen in Figs. 12 and 17, the
dramatic increase in design activity follows a dramatic increase in the progress indicator ratio. This
same relationship holds for the FD, SS, AT, and PM modules. See Figs. 18 through 21.

Coefficients of determination (r2), as defined in Ref. 11, between CumD. and
(CumDD/CumDC)n are presented in Table 5 for each module. This ratio seems to explain a high per-
centage of the variation of CumDn.

The analyses provide supporting evidence that the ratio (CumDD/CumDC)n is an important
measure of design activity progress in developing modules for complex software. When the PIR
becomes constant, design activity appears to be at a very low level or even nonexistent. When this
ratio increases, design activity increases dramatically. The relationship between this ratio and CumDn is
the strongest of all the possible relationships examined in this study. In at least one module, this ratio
can explain over 95% of the variation in CumDn. In the remaining modules, variations in
(CumDD/CumDC)n can explain a surprisingly high degree of the variations in CumDn.

'The probability of finding this significant result is not increased because the same analyses were conducted over different data
sets.
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shared services module
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Fig. 20 - Progress indicator ratio for
applications data type module
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Fig. 21 - Progress indicator ratio for
physical model module

Table 5 - Coefficientsa of Determination (r2)
between CumD and CumDD/CumDC

Module r2

AT 0.9552
DI 0.4322
EC 0.9010
FD 0.8992
PM 0.8194
SS 0.2658

aAll are significant at the p> .005 level.
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CONCLUSIONS

A natural conclusion is that discussion between software designers is a critically important factor
in the design of information-hiding modules for complex software. When the release dates for specifi-
cation baseline (e.g., Ref. 8) are examined with the PIR, the PIR seems to be indicating the complete-
ness of the baseline specifications. When a baseline appears before this ratio rises sharply or during a
sharp rise, the baseline is probably far from complete. Abstract interface specifications would seem to
become reasonably stable only after a sharp rise and settling of this ratio. Plotting this ratio over time
may provide for the software manager a meaningful tool with which to track design progress. If the
PIR has not surged and stabilized, the design is probably not finished irrespective of personnel claims
and published baseline documents.

In addition, the PIR has an attractive property not found in a monthly plot of CumDn. The range
of the y-axis is constant over time and over other modules and projects. Therefore, it is possible to
compare design progress on one module or project to another by using this ratio. The PIR does, how-
ever, have one possible negative property. Because it involves cumulative sums, the accumulation of
earlier design hours can dampen the impact of later variations in design activity. The PIR for the EC
module indicates, however, that this possible flaw may be more theoretical than practical.

There is no claim that the PIR is a measure of design completeness. There are clearly other rea-
sons why design activity on a specific software module may have stabilized; for example, personnel may
have shifted work to another module or they may have been vacation. However, the PIR ratio seems
to indicate when work on a piece of software is definitely not finished. If design completion is claimed
prior to a rise and settling in this ratio, there is probably more work that needs to be done on that
module.

It is necessary that this analysis be replicated on other large scale software development projects to
determine whether the PIR behaves similarly in other software development environments using dif-
ferent methodologies. It is intuitively appealing that discussion between project members necessarily
enhances the design of software modules. It would also be useful to quantify the relative surges in the
PIR. That is, there is practical importance in knowing that a given percentage increase in the PIR is
customarily followed by a predictable percentage increase in design activity. This, too, requires replicat-
ing these analyses in several different software design environments. Unfortunately, these data are dif-
ficult to collect and it is, perhaps, even more difficult to validate their accuracy.

Finally, it is logical to examine coding data for these relationships. It seems reasonable to accept
the importance of discussion in the design process. Its importance in the coding and testing processes
is not as clear. These data do exist in the SCR data base and plans are under way to examine them.
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